Inverse and Moore–penrose Inverse of Toeplitz Matrices with Classical Horadam Numbers

نویسندگان

  • SHOUQIANG SHEN
  • WEIJUN LIU
  • LIHUA FENG
  • S. SHEN
  • W. LIU
  • Z. ZHANG
  • Y. ZHANG
چکیده

For integers s,k with s 0 and k 0 , we define a class of lower triangular Toeplitz matrices U (s,k) n of type (s,k) , whose non-zero entries are the classical Horadam numbers U (a,b) i . In this paper, we derive a convolution formula containing the Horadam numbers. Using this formula, we obtain several combinatorial identities involving the Horadam numbers and the generalized Fibonacci numbers. In addition, we derive the inverse of the lower triangular Toeplitz matrix U (0,k) n and the Moore-Penrose inverse of the strictly lower triangular Toeplitz matrix U (s,k) n (s < 0) by utilizing only the Horadam numbers. Mathematics subject classification (2010): 15A09, 11B39, 05A19.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of the partitioning method to specific Toeplitz matrices

We propose an adaptation of the partitioning method for determination of the Moore–Penrose inverse of a matrix augmented by a block-column matrix. A simplified implementation of the partitioning method on specific Toeplitz matrices is obtained. The idea for observing this type of Toeplitz matrices lies in the fact that they appear in the linear motion blur models in which blurring matrices (rep...

متن کامل

An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse

A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.

متن کامل

Computing Moore-Penrose inverses of Toeplitz matrices by Newton's iteration

We modify the algorithm of [1], based on Newton’s iteration and on the concept of 2-displacement rank, to the computation of the Moore-Penrose inverse of a rank-deficient Toeplitz matrix. Numerical results are presented to illustrate the effectiveness of the method.

متن کامل

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

متن کامل

On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems

Classical condition numbers are normwise: they measure the size of both input perturbations and output errors using some norms. To take into account the relative of each data component, and, in particular, a possible data sparseness, componentwise condition numbers have been increasingly considered. These are mostly of two kinds: mixed and componentwise. In this paper, we give explicit expressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017